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Treatment options for chronically aggressive individuals remain limited despite recent
medical advances. Traditional pharmacological agents used to treat aggression, such
as atypical antipsychotics, have limited efficacy and are often replete with dangerous
side effects. The non-competitive NMDAR antagonists ketamine and memantine are
promising alternatives, but their effects appear to be highly dependent on dosage,
context, and personal experience. Importantly, these drugs can increase aggression
when combined with substances of abuse or during periods of heightened stress.
This is likely due to mechanistic differences operating at specific synapses under
different contexts. Previous findings from our lab and others have shown that early life
stress, substance abuse, and attack experience promote aggression through NMDAR-
dependent synaptic plasticity within aggression-related brain circuits. Ketamine and
memantine affect these types of aggression in opposite ways. This has led us to propose
that ketamine and memantine oppositely affect aggression brought on by early life
stress, substance abuse, or attack experience through opposite effects on NMDAR-
dependent synaptic plasticity. This would account for the persistent effects of these
drugs on aggression and suggest they could be leveraged as a more long-lasting
treatment option. However, a more thorough examination of the effects of ketamine
and memantine on cellular and synaptic function will be necessary for responsible
administration. Additionally, because the effects of ketamine and memantine are highly
dependent on prior drug use, traumatic stress, or a history of aggressive behavior,
we propose a more thorough medical evaluation and psychiatric assessment will be
necessary to avoid possible adverse interactions with these drugs.

Keywords: aggression, early life stress, NMDA receptor, medial amygdala, synaptic plasticity, ketamine,
memantine

INTRODUCTION

Recurring violent aggression is a major societal concern with few effective treatment options.
Currently, the standard of treatment for aggression is antipsychotics, benzodiazepines, or a
combination of the two. Unfortunately, these drugs induce numerous side effects, including loss
of appetite, fatigue, sleep disturbances, nausea, vomiting, diarrhea, weight gain, increased risk of
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respiratory depression, and oxygen desaturation (Delbello et al.,
2006; Haas et al., 2009; Redden et al., 2009; Geller et al., 2012;
Pandina et al., 2012; Pringsheim et al., 2015; Amerio et al., 2018;
Pisano et al., 2019; Solmi et al., 2020). In addition, many patients
will need to take these drugs for life, increasing their dosage
with time as tolerance develops. As a result, current research is
devoted to finding a more effective, quick-acting, long-lasting,
and well-tolerated alternative.

N-methyl-d-aspartate receptor (NMDAR) antagonists are a
promising pharmacological alternative for treating aggressive
behavior and aggression-related disorders. NMDARs are
members of the ionotropic glutamate binding receptor family
(Willard and Koochekpour, 2013). They are composed of five
non-identical subunits (GluN1, GluN2A-D, and GluN3A-B)
that form a central pore through which cations are conducted
upon the binding of glutamate. NMDARs are unique among the
ionotropic glutamate binding receptors because of their voltage-
gated properties, coincidence detection, and role in synaptic
plasticity (Squire and Kandel, 2009; Willard and Koochekpour,
2013). Antagonists for these receptors have been shown to
interfere with these properties.

We propose in this review that NMDAR antagonists are
favorable in treating aggression over traditional methods due to
their quicker onset of action, fewer observed side effects, and
potential as a long-lasting treatment option due to their effects
on synaptic plasticity (Roberts and Geeting, 2001; Cummings
et al., 2008; Wilcock et al., 2008; Hopper et al., 2015; Cole et al.,
2016; Riddell et al., 2017; Tran and Mierzwinski-Urban, 2019;
Barbic et al., 2021; Nordman et al., 2022). Though there are
multiple clinically available NMDAR antagonists, such as the
non-competitive antagonists dextromethorphan and amantadine
(Hewitt, 2000) and the non-selective, NMDAR-binding opioids
methadone, dextropropoxyphene, and ketobemidone (Sang,
2000), we will focus on the non-competitive antagonists
ketamine and memantine, as they are the most widely used and
successful NMDAR antagonists on the market.

KETAMINE AND MEMANTINE IN
TREATING HUMAN AGGRESSION

Ketamine is a non-competitive NMDAR antagonist that has been
successfully used to treat aggression in humans. Ketamine was
first developed in the United States in the 1960s as an alternative
anesthetic to phencyclidine (PCP; Domino et al., 1965). It was
found to have a quicker onset of action (less than 5 min)
and induce fewer negative emergence symptoms than PCP
(Dillon et al., 2003; Tran and Mierzwinski-Urban, 2019), though
both produce psychotic-like symptoms in schizophrenia patients
(Lahti et al., 2001; Beck et al., 2020). Ketamine gained popularity
as a party drug in the 1980s, with sub-anesthetic doses sending
users into the colloquially named ‘‘K-hole’’—a dissociative
state commonly accompanied by out-of-body experiences, a
sensation of weightlessness, and distortions of time (Dillon et al.,
2003). The FDA has approved ketamine for the induction and
maintenance of general anesthesia, but there are also many
off-label uses of ketamine, including as a local anesthetic, in
procedural sedation, pain management, asthma, and depression

(Papolos et al., 2013; Burger et al., 2016; Dwyer et al.,
2017; Cullen et al., 2018; Tran and Mierzwinski-Urban, 2019;
Zarrinnegar et al., 2019; Barbic et al., 2021; Kim et al., 2021;
Solano et al., 2021).

Many studies support the use of ketamine to treat violent
aggression, agitation, psychosis, self-harm, and suicidal ideation
(Burger et al., 2016; Dwyer et al., 2017; Cullen et al., 2018;
Zarrinnegar et al., 2019). In the majority of these cases,
clinicians take advantage of ketamine’s sedative properties to
control aggressive outbursts in hospital and pre-hospital settings
(Roberts and Geeting, 2001; Melamed et al., 2007; Le Cong et al.,
2012; Scheppke et al., 2014; Riddell et al., 2017; Barbic et al.,
2021; Kent et al., 2022). Sedative doses of ketamine fall in the
1–2 mg/kg range if given intravenously, and 3–5 mg/kg if given
intramuscularly. These doses are necessary to sedate acutely
aggressive individuals for the safety of the patient and staff but
are also associated with higher rates of intubation, emergence
delirium, and other adverse effects (Woods and Almvik, 2002;
Cole et al., 2016; Chang et al., 2019). Because of these risks, a
low-dose treatment protocol should be followed when possible.

Sub-sedative doses of ketamine (0.2–0.5 mg/kg IV, 30–120mg
intranasal) have been successful in treating aggression in
psychiatric patients (Papolos et al., 2013; Burger et al., 2016;
Dwyer et al., 2017; Zarrinnegar et al., 2019). For instance,
intranasal ketamine significantly reduced aggression in children
and adolescents with pediatric bipolar disorder (Papolos et al.,
2013). Additionally, military patients presenting to the hospital
with depression and suicidal ideations experienced a rapid
improvement of symptoms within 40 min of administration
of ketamine (Burger et al., 2016). Numerous studies support
ketamine’s rapid-acting antidepressant properties when given at
low doses (Papolos et al., 2013; Burger et al., 2016; Dwyer et al.,
2017; Zarrinnegar et al., 2019). Interestingly, chronic ketamine
use has been found to be more addictive at these sub-sedative
doses (Morgan et al., 2004; Bonnet, 2015; Schak et al., 2016).
Therefore, ketamine treatment for aggression symptoms related
to psychiatric disease must be carried out in a regulated,
controlled fashion. These studies are discussed in the Synaptic
Plasticity section below. A summary of our review findings on
ketamine in aggression is outlined in Table 1.

Memantine is a non-competitive NMDAR antagonist, with
low tomoderate affinity, which is approved for treatingmoderate
to severe Alzheimer’s disease and dementia (Huey et al., 2005;
Robinson and Keating, 2006; Thomas and Grossberg, 2009).
It has been reported that 5%–10% of Alzheimer’s patients
and 96% of dementia patients exhibit aggressive behavior
over the course of their illness (Keene et al., 1999; Jaclson
and Mallory, 2009). Atypical antipsychotics are among the
most common treatments for agitation and aggression in
Alzheimer’s and dementia patients (Ballard and Waite, 2006;
Ballard et al., 2008; Cerejeira et al., 2012), but there is a significant
risk of mortality, stroke, hallucination, and relapse after
continued use, especially during the first 30 days of treatment
(Kales et al., 2012; Calsolaro et al., 2019).

A key benefit of memantine is that, due to its long biological
half-life, it is not used recreationally, is not habit-forming, and
is well tolerated. Notably, memantine at a dose of 10–20 mg/day
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TABLE 1 | Human studies on the effects of ketamine and memantine.

References Observation Comments

Ketamine
Roberts and Geeting (2001) A single dose of 5 mg/kg IM ketamine suppressed violent behavior within

2–3 min through sedation
Lorazepam was administered
immediately afterward

Cole et al. (2016) A single dose of 5 mg/kg IM ketamine sedated individuals with severe acute
undifferentiated agitation significantly faster than 10 mg IM haloperidol
bolus.The mean time to adequate sedation was 5 min vs. 17 min, respectively.

Ketamine resulted in a higher rate of
intubation and other complications

Barbic et al. (2021) A single dose of 5 mg/kg IM ketamine outperformed 5 mg IM midazolam and
5 mg IM haloperidol boluses in suppressing severe psychomotor agitation in
hospital patients through sedation

Riddell et al. (2017) Mean single dose of 2.97 mg/kg IM and 0.87 mg/kg IV ketamine outperformed
5.71 mg/kg IM haloperidol, 2.25 mg/kg IM and 3.08 mg/kg IV midazolam, and
2.40 mg/kg IM and 1.90 mg/kg IV lorazepam in treating severely agitated
emergency department patients through sedation

Dosing was not uniform throughout the
study, average doses are listed.

Burger et al. (2016) A single dose of 0.2 mg/kg IV ketamine decreased depression and suicidal
ideation seen in military members that met the criteria for inpatient psychiatric
admission

Dwyer et al. (2017) 0.5 mg/kg IV ketamine infused 7x over an 8-week hospitalization decreased
depressive symptoms and suicidal ideation in an adolescent with severe
treatment-resistant depression. Outpatient treatments every 3–6 weeks after
discharge with continued improvement in symptoms

Papolos et al. (2013) 30–120 mg intranasal ketamine every 3–7 days elicited a substantial reduction
in measures of mania, fear of harm, and aggression in youth with pediatric
bipolar disorder- fear of harm phenotype

Solano et al. (2021) A single dose of 400 mg IM ketamine bolus used to treat excited delirium with
concurrent cocaine intoxication had a statistically significant increased rate of
intubation in ED

Symptoms of excited delirium include
aggressive behavior, combativeness,
and agitation

Zarrinnegar et al. (2019) 0.5 mg/kg IV ketamine treatment 6x over a 3-week inpatient hospitalization
ameliorated symptoms of psychosis, self-harm, and suicidality in an adolescent
with severe treatment-resistant depression. Suppression of aggressive
symptoms persisted for several months following discharge.

Prior treatment with many
antidepressants, benzodiazepines, and
antipsychotics failed to improve
symptomology

Scheppke et al. (2014) A single dose of 4 mg/kg ketamine IM suppressed aggression through sedation
in 96% of patients

Average time of 2 min to achieve
suitable sedation

Le Cong et al. (2012) Acute treatment of 0.5–1.5 mg/kg IV ketamine suppressed aggressive
outbursts through sedation

Ketamine treatment was initiated when
benzodiazepines and/or antipsychotics
failed

Melamed et al. (2007) Acute treatment of IV ketamine (dosage/concentration not listed) through
sedation decreased agitation in soldiers suffering a traumatic injury

Was effective alone or in combination
with other sedative agents

Donoghue et al. (2015) Acute treatment with 10 mg procedural IV ketamine-induced an 8 and 13-day
remission of aggressive behaviors in a child with PTSD after a tonsillectomy and
sedated MRI.

Mankowitz et al. (2018) A mean, single dose of 315 mg IM ketamine effectively treated undifferentiated
agitation through sedation

Heydari et al. (2018) A single dose of 4 mg/kg IM ketamine outperformed 5 mg IM haloperidol bolus
to sedate severely agitated patients in the emergency department

O’Connor et al. (2019) A single dose of 4 mg/kg IM ketamine had a higher intubation rate than
haloperidol (5 mg IM bolus) plus benzodiazepines (2–4 mg IM bolus) in severely
agitated patients

Olives et al. (2016) A single dose of 5 mg/kg IM ketamine delivered pre-hospital was found to be
associated with a high rate of intubation (63%) in profoundly agitated patients

Kent et al. (2022) A single dose of 5 mg/kg IM ketamine outperformed the combination of
haloperidol (5 mg IM bolus) and midazolam (5 mg IM bolus) to sedate severely
agitated ED patients through sedation. The mean time to adequate sedation
was 5.8 min vs. 14.7 min, respectively

The ketamine arm experienced a higher
rate of serious adverse events

Memantine
Cummings et al. (2008) 20 mg/day PO memantine treatment agitation/aggression in patients with

Alzheimer’s disease and baseline levels of agitation/aggression

Wilcock et al. (2008) 20 mg/day PO memantine decreased agitation and aggression in patients with
Alzheimer’s disease

(Continued)
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TABLE 1 | Continued

References Observation Comments

Thomas and Grossberg
(2009)

20 mg/day PO memantine treatment was associated with less severity or
emergence of agitation/aggression compared to placebo

Da Re et al. (2015) 20 mg/day PO memantine used to treat dementia resulted in improvement of
agitation in 19% of participants, but an increase in agitation in 5.6% of
participants

Herrmann et al. (2011) Significant decrease in agitation and aggression following 10 mg PO memantine
treatment twice daily in patients with Alzheimer’s disease

Gauthier et al. (2008) 20 mg/day PO memantine reduced agitation and aggression in patients with
Alzheimer’s disease compared to the placebo group

Ichinose et al. (2021) 20 mg/day PO memantine successfully treated aggressive behavior that was a
byproduct of hepatic encephalopathy

Kishi et al. (2017) 10 and 20 mg/day PO memantine treatment significantly improved
agitation/aggression when compared to the control group

Fox et al. (2012) 10 mg PO memantine twice daily did not significantly improve agitation in
patients with moderate to severe Alzheimer’s disease

Abbreviations: IM, intramuscular; IV, intravenous; PO, per os/by mouth; ED, emergency department.

has been effective in reducing aggression and agitation associated
with Alzheimer’s disease and dementia patients without the
accompanying risks of atypical antipsychotics (Cummings et al.,
2008; Wilcock et al., 2008). However, some patients experience
treatment-induced agitation with memantine use (Da Re et al.,
2015), suggesting that a more careful clinical examination is
key to proper treatment. A summary of our review findings on
memantine in aggression is outlined in Table 1.

The future of ketamine and memantine is promising.
Still, our limited knowledge of the mechanisms behind
NMDARs and aggression, paired with the diverging effects
observed in animal models warrants more research, which we
discuss below.

NMDARs, KETAMINE, AND MEMANTINE
IN ANIMAL AGGRESSION

NMDARs are highly expressed in regions associated with
attack behavior, such as the amygdala, prefrontal cortex (PFC),
hippocampus, nucleus accumbens, hypothalamus, striatum, and
brain stem (Shaikh and Siegel, 1994; Shaikh et al., 1994; Petralia
et al., 2007; Peregud et al., 2012; Takahashi et al., 2015; Bacq
et al., 2018; Chen and Hong, 2018; Newman et al., 2018; Zoicas
and Kornhuber, 2019; Falkner et al., 2020; Figure 1A). The
NMDARs, particularly the GluN2 subunits, have a nuanced
and varied role in species-typical and excessive aggression,
as demonstrated by rodent studies. For example, decreased
GluN2B expression in the lateral amygdala is associated with
naturally occurring and social isolation-induced aggression
(Bacq et al., 2018). However, increased GluN2A and GluN2B
expression and GluN2B-dependent NMDAR currents in the
hippocampus and frontal cortex are associated with social
isolation-induced aggression and morphine-induced aggression,
respectively (Meyer et al., 2004; Zhao et al., 2009; Chang et al.,
2015; Chang and Gean, 2019). Interestingly, in the mPFC,
increases in GluN2D, but not GluN2A or GluN2B, may mediate
alcohol-induced aggression (Newman et al., 2018).

Unsurprisingly, ketamine and memantine also have a
nuanced role in aggression that depends on dosage, context,
experience, and species (Table 2). For example, in mice and
zebrafish, high doses of ketamine suppress territorial aggression
while low doses increase it (Newman et al., 2012; Michelotti et al.,
2018). In rats, low doses, but not high doses, of ketamine suppress
muricide behavior (Takahashi et al., 1984). Memantine, by
contrast, has no effect on species-typical aggression (Sukhotina
and Bespalov, 2000; Newman et al., 2012, 2018).

As with humans, substance use plays a significant role
in the effects of ketamine and memantine on aggression. In
alcohol-challenged mice, ketamine reduces territorial aggression
at high doses and reduces motivated aggression at low doses
(Newman et al., 2012; Covington et al., 2018). Memantine
increases alcohol-heightened aggression at low doses but has
no effect at high doses (Newman et al., 2012, 2018). By
contrast, high doses of memantine, but not low doses, decrease
morphine withdrawal-facilitated aggressive behavior in mice
(Sukhotina and Bespalov, 2000).

Stress also appears to be a strong factor. For example,
ketamine increases aggression in sleep-deprived rats and socially
isolated mice (Takahashi et al., 1984). In adolescent mice,
ketamine decreases aggression induced by neonatal maternal
separation (Shin et al., 2019) but increases aggression induced
by chronic social isolation followed by acute non-contingent
foot shock (Nordman et al., 2022). Interestingly, memantine
suppresses aggression induced by chronic social isolation stress
followed by acute non-contingent foot shock, similar to what has
been seenwith the non-competitive NMDAR antagonistMK-801
(Chang et al., 2015; Nordman et al., 2022).

While these findings clearly demonstrate a role for NMDARs
in aggression and NMDAR antagonists as a potential treatment
option, dosage, context, experience, and brain region all need
to be considered (Figure 1B). Furthermore, the effects of
ketamine and memantine suggest they operate through distinct
mechanisms, which we discuss in the ‘‘Mechanistic Differences’’
section below.
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FIGURE 1 | Summary of NMDAR-dependent aggression in mice. (A) Brain regions associated with attack behavior are enriched in and regulated by NMDARs. Red
regions indicate known areas involved in NMDAR-dependent synaptic plasticity-induced aggression. (B) Effects of low or high doses of ketamine and memantine on
species-typical, stress-induced, and drug or alcohol-induced aggression. Red arrows—increased aggression; blue arrows—decreased aggression; gray arrows—no
change in aggression. The PFC, prefrontal cortex; NAc, nucleus accumbens; BNST, bed nucleus of the stria terminalis; LA, lateral amygdala; VmH, ventromedial
hypothalamus; MeA, medial amygdala; PAG, periacqeductal gray; DR, dorsal raphe.

SYNAPTIC PLASTICITY

NMDARs are one of the primary sources of synaptic plasticity in
the brain (Squire and Kandel, 2009; Willard and Koochekpour,
2013). When bound by glycine and glutamate at certain voltage

thresholds, NMDARs conduct large amounts of the second
messenger cation calcium into the synapse. This sudden, large
increase in calcium concentration activates a series of kinases
and phosphatases that promote the insertion or removal of
another type of ionotropic glutamate binding receptor, the
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TABLE 2 | Animal studies on the effects of ketamine and memantine.

References Sex/Age/Species Observation

Ketamine
Nordman et al. (2022) 7–8-week-old male

mice
IP injections of 10 mg/kg ketamine enhance early life stress-induced aggression

Newman et al. (2018) Adult male mice IP injections of 3–10 mg/kg ketamine increased aggression

IP injections of 30 ketamine mg/kg decreased aggression

IP injections of 30 mg/kg ketamine decreased alcohol-heightened and alcohol non-heightened aggression

Newman et al. (2012) Adult male mice IP injections of 3–10 mg/kg ketamine increased aggression

IP injections of 30 mg/kg decreased aggression

IP injections of 30 mg/kg ketamine decreased alcohol-heightened and alcohol non-heightened aggression

Michelotti et al. (2018) Adult zebrafish,
50:50 male:female

Low dose (2 mg/kg) ketamine increased aggression

High (20–40 mg/kg) dose reduced aggression

Takahashi et al. (1984) Male rats IP injections of low doses (3–5 mg/kg) of ketamine increased aggression in rats deprived of REM sleep and in
mice after social isolation

Mouse killing behavior response blocked in muricide rats at all ketamine doses administered IP

Covington et al. (2018) Adult male rats and
mice

IP injections of low dose (10 mg/kg) ketamine reduced motivated aggression

IP injection of low doses (7.5 and 10 mg/kg) of ketamine reduced alcohol-escalated motivated aggression

Shin et al. (2019) Adolescent mice Chronic (7 days) IP injections of 15 mg/kg ketamine reduced aggression induced by neonatal
maternal separation

Memantine
Nordman et al. (2022) 7–8-week-old male

mice
IP injections of MK-801 and memantine suppress early life stress-induced aggression

Newman et al. (2018) Adult male mice IP injection of 1–10 mg/kg memantine increased aggression

20–30 ug/ul memantine infused into the mPFC increased aggression in mice that consumed alcohol

Newman et al. (2012) Adult male mice IP injection of 1–10 mg/kg memantine increased aggression in mice that consumed ethanol

IP injection of 17 mg/kg memantine decreased aggression compared to vehicle controls

Sukhotina and
Bespalov (2000)

Adult male mice IP injection of 10–30 mg/kg memantine lessened morphine withdrawal-facilitated aggression

Abbreviations: Intraperitoneal, IP.

AMPA receptor. AMPA receptors are not voltage-gated, so
the more AMPA receptors there are in the synapse, the more
the membrane will be depolarized when AMPARs are bound
by glutamate, thus increasing the likelihood that a neuron
will fire an action potential. Conversely, the fewer AMPA
receptors there are in the synapse, the less the membrane will
be depolarized when AMPARs are bound by glutamate, thus
decreasing the likelihood that a neuron will fire an action
potential when activated. Insertion and removal of AMPA
receptors by NMDARs is the principal mechanism for synaptic
plasticity at excitatory synapses in the brain.

Excessive chronic aggression brought on by early life
stress and social isolation is mediated by the persistent
effects of NMDAR-dependent synaptic plasticity, which can
be suppressed using NMDAR antagonists (Chang et al., 2015,
2018; Nordman et al., 2020a,b). Therefore, NMDAR antagonists
possess a feature more popular mood-stabilizing and aggression-
suppressing drugs lack: they can inhibit certain persistent forms

of maladaptive social behaviors such as excessive and recurring
aggression from ever forming, likely through their effects on
synaptic plasticity. This is best seen in animal models, where a
single dose can inhibit depression-like, anxiety-like, or aggressive
behavior when administered before a potentiating event (da Silva
et al., 2010; Ma et al., 2013; Yang et al., 2016; Chang et al., 2018;
Nordman et al., 2020a,b) or reverse maladaptive behaviors when
administered after the potentiating event (Maeng et al., 2008;
Moda-Sava et al., 2019).

In a recent study, we showed that NMDAR antagonism could
alter aggression induced by early life stress after a single dose
(Nordman et al., 2022). Our early life stress paradigm involves
social isolation during early adolescence followed by acute
physical stress in the form of non-contingent foot shock during
late adolescence. Combining these stressors produces prolonged
increases in excessive aggression when measured seven days
later. When we systemically injected a single dose of the
non-competitive NMDAR antagonists MK-801 or memantine
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immediately before foot shock in our early life-stress paradigm,
no increase in aggression was found when measured 7 days
later. However, when we administered a single intraperitoneal
(IP) injection of ketamine before foot shock, surprisingly, we
observed a significant increase in aggression when measured
7 days later. These results indicate that different NMDAR
antagonists have distinct effects on early life stress-induced
aggression and suggest that memantine and ketamine are
mechanistically distinct, possibly through their opposing effects
on synaptic plasticity.

In support of this, in another recent study, we showed
that NMDARs regulate aggression priming through NMDAR-
dependent synaptic plasticity (Nordman et al., 2020a). Attack
priming is a phenomenon where previous attack experience
increases the likelihood and severity of a future attack within
a narrow time window (∼30–60 min). Notably, in that study,
we found that attack experience, high-frequency optogenetic
stimulation of aggression brain pathways, and early life stress
heightened aggression by synaptically potentiating glutamatergic
synapses within the aggression circuit. Specifically, in vivo
electrophysiological recordings of optically evoked excitatory
postsynaptic potentials indicate that both attack experience and
acute footshock after social isolation potentiate glutamatergic
synapses between the posterior ventral segment of the medial
amygdala (MeApv) and its downstream synaptic partners
the ventrolateral aspect of the ventromedial hypothalamus
(MeApv-VmHvl) and the medial aspect of the bed nucleus
of the stria terminalis (MeApv-BNSTm; Nordman et al.,
2020a,b). A single systemic injection of the non-competitive
NMDAR antagonist MK-801 30 min before aggression
testing suppressed both aggression priming and synaptic
potentiation at these synapses, indicating that both are
NMDAR-dependent.

Since (1) aggression priming and early life stress-induced
aggression both involve synaptic plasticity within the same
glutamatergic MeApv pathways; and (2) aggression priming is
NMDAR-dependent, it stands to reason that early life stress-
induced aggression is NMDAR-dependent as well. However,
the distinct effects of MK-801, memantine, and ketamine on
aggression suggest these drugs have opposing effects on synaptic
plasticity within MeApv pathways. Future studies should explore
this possibility.

Nevertheless, NMDAR antagonists are an exciting treatment
option for excessive aggression and aggression associated with
early life stress because it bypasses one of the great challenges
of traditional pharmacological methods: daily and lifelong
administration of a dangerous drug that only diminishes in
its efficacy over time. In support of this, it has been found
that in some psychiatric patients, ketamine can suppress
aggressive behavior long past the time it takes for the body
to metabolize the drug (plasma half-life is 79 +/- 8 min;
Hirota and Lambert, 1996; Donoghue et al., 2015; Dwyer et al.,
2017; Zarrinnegar et al., 2019). For example, a single sedating
dose (10 mg) of ketamine successfully suppressed aggressive
behavior for 13 days in a 7-year-old child diagnosed with PTSD
displaying reactive attachment disorder and disruptive behavior
disorder (Donoghue et al., 2015). Three months later, the same

sedating dose of ketamine reduced aggression and increased
the patient’s receptivity to psychiatric care for another 8 days,
showing that ketamine can be effectively readministered while
retaining its persistent effects on aggression. Similarly, patients
receiving ketamine treatment for depression showed significant
improvements in aggression symptoms (e.g., psychosis, self-
harm, and suicidality) that lasted for weeks to months afterward
(Dwyer et al., 2017; Zarrinnegar et al., 2019). Synaptic plasticity
could explain the vast difference between the time it takes to
metabolize ketamine and the sustained decrease in aggressive
symptoms seen in these patients.

Therefore, in this review, we argue that NMDAR antagonists
like ketamine and memantine could reduce the frequency of
taking, or even alleviate the patient’s need to remain on,
increasingly tolerant and dangerous drugs like antipsychotics,
benzodiazepines, lithium, or anticonvulsants for the treatment
of aggression. In addition, we argue that NMDAR antagonists
could be used to suppress aggression induced by a potentiating
event like stress. Of course, it is difficult to predict when a
potentiating event might occur. However, NMDAR antagonists
could suppress the susceptibility of individuals with psychiatric
diseases to develop aggressive behavior during periods of
heightened stress or substance abuse, a significant advantage
over current options. We note though that the distinct effects of
ketamine and memantine on aggression associated with early life
stress in our animal model suggest the need for great care when
prescribing NMDAR drugs to treat excessive aggression.

MECHANISTIC DIFFERENCES

We highlight ketamine and memantine in this review as they
are the most common and successful NMDAR-drugs for treating
excessive aggression in humans and are potent synaptic plasticity
blockers. While both drugs are similar in their effects on channel
function (Johnson et al., 2015), important differences remain.
Perhaps the most important differences are the receptor types
each drug targets.

For example, ketamine is non-selective for the NMDAR,
binding to muscarinic, monoaminergic, and opioid
receptors, among others (Hirota and Lambert, 1996). It
has been hypothesized that these interactions mediate the
psychotomimetic effects many patients experience and may
account for the more persistent effects of ketamine on pain
and as an antidepressant (Sleigh et al., 2014; Zorumski et al.,
2016). This would suggest that the effects of ketamine on
aggression-related disorders are not exclusively mediated
through NMDARs.

Ketamine and memantine also differ in their NMDAR
dissociation rates, with ketamine binding to the NMDAR for
longer periods of time than memantine (Johnson et al., 2015;
Glasgow et al., 2017). This has been used to explain ketamine’s
high and memantine’s low sedative and psychotomimetic effects
(Lanthorn et al., 2000; Bolshakov et al., 2003; Kotermanski and
Johnson, 2009; Kitanaka et al., 2018).

The location of NMDARs may also explain the differences
between these drugs. There is evidence that memantine
binds more readily to extrasynaptic NMDARs than ketamine
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(Zhao et al., 2006; Leveille et al., 2008; Okamoto et al., 2009;
Milnerwood et al., 2010; Johnson et al., 2015), though these
results have been disputed (Wroge et al., 2012; Emnett et al.,
2013; Zhou et al., 2013). Extrasynaptic NMDARs have been
associated with mood and anxiety disorders related to chronic
social defeat stress (Tse et al., 2019). Ketamine, however,
likely does not distinguish between synaptic and extrasynaptic
NMDARs (Autry et al., 2011; Emnett et al., 2013; Nosyreva et al.,
2013; Gideons et al., 2014; Miller et al., 2014).

It is also possible that memantine and ketamine bind to
overlapping but distinct NMDAR subpopulations. For example,
it was recently shown that memantine and ketamine target
different NMDAR subtypes, with memantine preferentially
binding to and desensitizing the GluN1/2A subtype and
ketamine binding to and desensitizing the GluN1/2B subtype
(Glasgow et al., 2017).

Another possibility is that the enhanced effects of ketamine
are due to the disinhibition of excitatory signaling in different
areas of the brain. Ketamine has been shown to disinhibit
pyramidal neurons in the medial prefrontal cortex (mPFC) and
the CA1 region of the hippocampus by inhibiting GABAergic
interneurons in both areas (Moghaddam et al., 1997; Widman
and McMahon, 2018; Ali et al., 2020; Gerhard et al., 2020).
This is hypothesized to occur because of ketamine’s higher
affinity for GluN2B-containing NMDARs expressed in PFC
somatostatin interneurons (Ali et al., 2020; Gerhard et al., 2020)
and GluN2D-containing NMDARs preferentially expressed in
CA1 hippocampal interneurons (Perszyk et al., 2016; Zanos
and Gould, 2018). It is interesting to consider that a similar
mechanism may be operating at MeApv-VmHvl and MeApv-
BNSTm synapses, enhancing synaptic potentiation that drives
early life stress-induced aggression.

Finally, it is worth noting that ketamine is a chiral compound,
with most ketamine available today being a racemic mixture of
the two optical enantiomers (R) and (S) (Kohrs and Durieux,
1998; Paul et al., 2009; Hashimoto, 2019). (R)-ketamine and
(S)-ketamine have differing effects in many human and rodent
studies (Paul et al., 2009; Hashimoto, 2019; Rafalo-Ulinska et al.,
2022). It was initially suggested that (S)-ketamine was a better
candidate as an antidepressant than (R)-ketamine because of
its higher affinity for the NMDAR (Singh et al., 2016). And
in fact, the FDA recently approved (S)-ketamine in the form
of a nasal spray for treatment-resistant depression in adults
(Hashimoto, 2019). However, in recent studies, (R)-ketamine
was found to have greater potency and fewer side effects at
lower doses than (S)-ketamine, suggesting it might be a safer
alternative (Chang et al., 2019; Hashimoto, 2019; Beck et al., 2020;
Rafalo-Ulinska et al., 2022). In a meta-analysis of 36 studies,
racemic and (S)-ketamine were associated with a statistically
significant increase in transient psychopathology in healthy and
schizophrenia patients (Beck et al., 2020). Prescribing the lowest
dose of ketamine necessary is essential due to the high risk of
abuse associated with ketamine. Ketamine users quickly develop
tolerance to the drug, and typical withdrawal effects include
cravings, anxiety, sweating, and shaking (Kokane et al., 2020).

These differences in synaptic location, NMDAR subtype,
chirality, and tolerance may explain why memantine and

ketamine have such diverging clinical and experimental effects
and provide a mechanism for the unique effects of these drugs on
excessive and stress-induced aggression.

CLINICAL ASSESSMENT

Our studies and others have demonstrated that different
NMDAR antagonists can promote or exacerbate aggressive
behavior depending on a prior history of substance abuse,
traumatic stress, or aggressive behavior. A proper assessment
would decrease the incidence of aggression by ruling out those
NMDAR antagonists as treatment options. Therefore, a complete
evaluation of the patient’s history of psychiatric and physical
illness and an assessment of past substance use should be
performed before administering and prescribing these drugs.
Fortunately, there are standard methods for assessing whether
an individual has a history of traumatic stress or aggressive
behavior or is currently using or abusing drugs or alcohol that
would exclude them from being prescribed specific NMDAR
antagonists.

Tests that evaluate a history of traumatic stress include The
Primary Care PTSD Screen for DSM-5 (Prins et al., 2016), The
Short Post-Traumatic Stress Disorder Rating Interview (Connor
and Davidson, 2001), and the Trauma Screening Questionnaire
(Brewin et al., 2002). Tests for individuals with a history of
aggressive behavior or who are in an actively aggressive state
include the Dynamic Appraisal of Situational Aggression (DASA;
Ogloff and Daffern, 2006) and the Brøset Violence Checklist
(BVC;Woods andAlmvik, 2002), which assess the likelihood that
a patient will become aggressive through factors such as physical
or verbal threats, negative attitudes, and impulsivity. Finally,
tests like the Tobacco, Alcohol, Prescription Medication, and
Other Substance Use (TAPS) Tool (McNeely et al., 2016) and the
Brief Screener for Alcohol, Tobacco, and Other Drugs (BSTAD)
tool (Kelly et al., 2014) are used to evaluate drug and alcohol
abuse in adults and adolescents, respectively. Importantly, these
assessment tools can be implemented in the hospital setting,
significantly reducing the likelihood of unintended aggressive
behavior by NMDAR antagonists, and paving the way for more
nuanced administration.

CONCLUSION

This review highlights some of the promises and pitfalls of
the non-competitive NMDAR antagonists, and in particular
ketamine and memantine, in treating excessive and recurring
violent aggression. On the one hand, NMDAR antagonists are
clearly powerful clinical tools in managing violent aggression.
They possess a quicker onset of action and fewer observed
side effects than current alternatives. NMDARs also have great
potential as a long-lasting treatment option due to their effects
on synaptic plasticity (Roberts and Geeting, 2001; Cummings
et al., 2008; Hopper et al., 2015; Cole et al., 2016; Riddell et al.,
2017; Barbic et al., 2021), where these drugs can induce persistent
changes in synaptic function, neural firing, and animal behavior,
in some cases, even after a single dose (Wilcock et al., 2008;
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Moda-Sava et al., 2019; Tran and Mierzwinski-Urban, 2019;
Nordman et al., 2022).

While the potential of these drugs to treat excessive aggression
related to changes in synaptic plasticity is enormous, care
is needed. Numerous reports show that NMDAR antagonists
have highly varied effects on aggression depending on dose,
context, and experience (Nordman, 2021), outlined in Figure 1B.
While many of these drugs can lessen or even suppress
aggression, they can also heighten aggression when used
improperly (Sukhotina and Bespalov, 2000; Newman et al.,
2012, 2018; Covington et al., 2018; Nordman et al., 2022).
Evidence from our lab and others suggests these differences may
depend on changes in synaptic plasticity within limbic circuits
(Figure 1A). Future studies should be aimed at investigating this
intriguing possibility.
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